131 research outputs found

    Efficacy and tolerability of olmesartan/amlodipine combination therapy in patients with mild-to-severe hypertension: focus on 24-h blood pressure control.

    Get PDF
    European guidelines recommend that treating patients with hypertension to blood pressure (BP) goal is an important target for cardiovascular (CV) risk reduction. However, office BP may be a suboptimal target, given its limitations. Indeed, there is evidence that 24-h ambulatory BP monitoring (ABPM) parameters may score better in this regard, representing more accurate predictors of CV risk. In particular, mean 24-h BP and BP variability both correlate closely with hypertension end-organ damage and rate of CV events, which suggests that antihypertensive therapy should provide smooth BP control over the full 24-h dosing interval. The use of ABPM has demonstrated that fixed-dose combination therapy, comprising agents with complementary mechanisms of action, may overcome the challenge of suboptimal BP control by providing improvements in antihypertensive efficacy and tolerability throughout the 24-h period. Olmesartan/amlodipine is one of the latest combination therapies to be approved, and a number of large clinical trials have demonstrated the efficacy and tolerability of this combination in patients with mild-to-severe hypertension. Furthermore, recent ABPM studies of olmesartan/amlodipine-based treatment algorithms have shown the satisfactory 24-h antihypertensive efficacy of this fixed-dose combination. This review provides an overview of recent clinical data on the efficacy and tolerability of fixed-dose olmesartan/amlodipine combination therapy for the treatment of mild-to-severe hypertension, with a focus on sustained 24-h BP control

    Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration

    Get PDF
    INTRODUCTION: Biglycan is an important proteoglycan of the extracellular matrix of intervertebral disc (IVD), and its decrease with aging has been correlated with IVD degeneration. Biglycan deficient (Bgn(−/0)) mice lack this protein and undergo spontaneous IVD degeneration with aging, thus representing a valuable in vivo model for preliminary studies on therapies for human progressive IVD degeneration. The purpose of the present study was to assess the possible beneficial effects of adipose-derived stromal cells (ADSCs) implants in the Bgn(−/0) mouse model. METHODS: To evaluate ADSC implant efficacy, Bgn(−/0) mice were intradiscally (L1-L2) injected with 8x10(4) ADSCs at 16 months old, when mice exhibit severe and complete IVD degeneration, evident on both 7Tesla Magnetic Resonance Imaging (7TMRI) and histology. Placebo and ADSCs treated Bgn(−/0) mice were assessed by 7TMRI analysis up to 12 weeks post-transplantation. Mice were then sacrificed and implanted discs were analyzed by histology and immunohistochemistry for the presence of human cells and for the expression of biglycan and aggrecan in the IVD area. RESULTS: After in vivo treatment, 7TMRI revealed evident increase in signal intensity within the discs of mice that received ADSCs, while placebo treatment did not show any variation. Ultrastructural analyses demonstrated that human ADSC survival occurred in the injected discs up to 12 weeks after implant. These cells acquired a positive expression for biglycan, and this proteoglycan was specifically localized in human cells. Moreover, ADSC treatment resulted in a significant increase of aggrecan tissue levels. CONCLUSION: Overall, this work demonstrates that ADSC implant into degenerated disc of Bgn(−/0) mice ameliorates disc damage, promotes new expression of biglycan and increased levels of aggrecan. This suggests a potential benefit of ADSC implant in the treatment of chronic degenerative disc disease and prompts further studies in this field

    Alternative sources of neurons and glia from somatic stem cells.

    Get PDF
    Stem cell populations have been shown to be extremely versatile: they can generate differentiated cells specific to the tissue in which they reside and descendents that are of different germ layer origin. This raises the possibility of obtaining neuronal cells from new biological source of the same adult human subjects. In this study, we found that epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) cooperated to induce the proliferation, self-renewal, and expansion of neural stem cell-like population isolated from several newborn and adult mouse tissues: muscle and hematopoietic tissues. This population, in both primary culture and secondary expanded clones, formed spheres of undifferentiated cells that were induced to differentiate into neurons, astrocytes, and oligodendrocytes. Brain engraftment of the somatic-derived neural stem cells generated neuronal phenotypes, demonstrating the great plasticity of these cells with potential clinical application

    Absence of Caspase 8 and High Expression of PED Protect Primitive Neural Cells from Cell Death

    Get PDF
    The mechanisms that control neural stem and progenitor cell survival are unknown. In several pathological conditions, death receptor (DR) ligands and inflammatory cytokines exert a deleterious effect on neurons, whereas primitive neural cells migrate and survive in the site of lesion. Here, we show that even in the presence of inflammatory cytokines, DRs are unable to generate death signals in primitive neural cells. Neural stem and progenitor cells did not express caspase 8, the presence of which is required for initiating the caspase cascade. However, exogenous or cytokine-mediated expression of caspase 8 was not sufficient to restore their DR sensitivity. Searching for molecules potentially able to block DR death-inducing signaling complex (DISC), we found that primitive neural cells expressed high levels of the death effector domain-containing protein PED (also known as PEA-15). PED localized in the DISC and prevented caspase 8 recruitment and activation. Moreover, lentiviral-mediated delivery of PED antisense DNA resulted in dramatic down-regulation of the endogenous gene expression and sensitization of primitive neural cells to apoptosis mediated by inflammatory cytokines and DRs. Thus, absence of caspase 8 and high expression of PED constitute two levels of protection from apoptosis induced by DRs and inflammatory cytokines in neural stem and progenitor cells

    Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice

    Get PDF
    Introduction: Silk fibroin (SF) scaffolds have been shown to be a suitable substrate for tissue engineering and to improve tissue regeneration when cellularized with mesenchymal stromal cells (MSCs). We here demonstrate, for the first time, that electrospun nanofibrous SF patches, cellularized with human adipose-derived MSCs (Ad-MSCs-SF) or decellularized (D-Ad- MSCs-SF) are effective in the treatment of skin wounds, improving skin regeneration in db/db diabetic mice. Methods: The conformational and structural analyses of SF and D-Ad-MSCs-SF patches were performed by scanning electron microscopy, confocal microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Wounds were performed by a 5mm punch biopsy tool on the mouse\u2019s back. Ad-MSCs-SF and D-Ad-MSCs-SF patches were transplanted and the efficacy of treatments was assessed by measuring the wound closure area, by histological examination and by gene expression profile. We further investigated the in vitro angiogenic properties of Ad-MSCs-SF and D-Ad-MSCs-SF patches by affecting migration of human umbilical vein endothelial cells (HUVECs), keratinocytes (KCs) and dermal fibroblasts (DFs), through the aortic ring assay and, finally, by evaluating the release of angiogenic factors. Results: We found that Ad-MSCs adhere and grow on SF, maintaining their phenotypic mesenchymal profile and differentiation capacity. Conformational and structural analyses on SF and D-Ad- MSCs-SF samples, showed that sterilization, decellularization, freezing and storing did not affect the SF structure. When grafted in wounds of diabetic mice, both Ad-MSCs-SF and DAd- MSCs-SF significantly improved tissue regeneration, reducing the wound area respectively by 40% and 35%, within three days, completing the process in around 10 days compared to 15-17 days of controls. RT2 gene profile analysis of the wounds treated with Ad- MSCs-SF and D-Ad-MSCs-SF showed an increment of genes involved in angiogenesis and matrix remodelling. Finally, Ad-MSCs-SF and D-Ad-MSCs-SF co-cultured with HUVECs, DFs and KCs, preferentially enhanced the HUVECs\u2019 migration and the release of angiogenic factors stimulating microvessel outgrowth in the aortic ring assay. Conclusions: Our results highlight for the first time that D-Ad-MSCs-SF patches are almost as effective as Ad-MSCs-SF patches in the treatment of diabetic wounds, acting through a complex mechanism that involves stimulation of angiogenesis. Our data suggest a potential use of DAd- MSCs-SF patches in chronic diabetic ulcers in humans

    Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model

    Get PDF
    Mesenchymal stromal cells (MSCs) are considered an important therapeutic tool in cancer therapy. They possess intrinsic therapeutic potential and can also be in vitro manipulated and engineered to produce therapeutic molecules that can be delivered to the site of diseases, through their capacity to home pathological tissues. We have recently demonstrated that MSCs, upon in vitro priming with anti-cancer drug, become drug-releasing mesenchymal cells (Dr-MCs) able to strongly inhibit cancer cells growth

    GEN-O-MA project: an Italian network studying clinical course and pathogenic pathways of moyamoya disease—study protocol and preliminary results

    Get PDF
    Background: GENetics of mOyaMoyA (GEN-O-MA) project is a multicenter observational study implemented in Italy aimed at creating a network of centers involved in moyamoya angiopathy (MA) care and research and at collecting a large series and bio-repository of MA patients, finally aimed at describing the disease phenotype and clinical course as well as at identifying biological or cellular markers for disease progression. The present paper resumes the most important study methodological issues and preliminary results. Methods: Nineteen centers are participating to the study. Patients with both bilateral and unilateral radiologically defined MA are included in the study. For each patient, detailed demographic and clinical as well as neuroimaging data are being collected. When available, biological samples (blood, DNA, CSF, middle cerebral artery samples) are being also collected for biological and cellular studies. Results: Ninety-eight patients (age of onset mean ± SD 35.5 ± 19.6 years; 68.4% females) have been collected so far. 65.3% of patients presented ischemic (50%) and haemorrhagic (15.3%) stroke. A higher female predominance concomitantly with a similar age of onset and clinical features to what was reported in previous studies on Western patients has been confirmed. Conclusion: An accurate and detailed clinical and neuroimaging classification represents the best strategy to provide the characterization of the disease phenotype and clinical course. The collection of a large number of biological samples will permit the identification of biological markers and genetic factors associated with the disease susceptibility in Italy

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes
    • 

    corecore